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ABSTRACT
Certain single-molecule measurements record a time series of
individual physical events. Examples of such events include the
emission of single photons or discrete fluctuations of molecular
state (as in fluorescence blinking or spectral diffusion). The
generating function formalism is a natural framework for studying
these measurements both theoretically and numerically. Kinetic,
stochastic, and quantum models for chromophore dynamics may
all be extended to generating function calculations, enabling direct
comparison to experiment with only slight extensions to familiar
theoretical/computational tools.

I. Introduction
The introduction of single-molecule experimental tech-
niques just over a decade ago1,2 has revolutionized the
study of condensed-phase systems in chemistry, physics,
and biology. While certain single-molecule studies focus
on systems where dynamics are directly observable via
microscopy,3-6 frequently it is necessary to extract infor-
mation from spectroscopic signals (see reviews in refs
7-11 and references therein). More often than not,
interpretation of single-molecule experiments is a com-
plicated affair.

All molecules but the largest biopolymers are too small
to be studied with light microscopes and most molecular

motions are far too fast to be studied with video-rate
cameras. This leaves spectroscopy as the primary means
of studying single molecules and their dynamics. In single-
molecule spectroscopy (SMS) experiments, laser irradia-
tion of single chromophoric molecules induces fluores-
cence of photons. The fluoresced photons are detected;
their arrival times, and possibly frequency information as
well, serve as the experimental data. SMS spectroscopy,
unlike traditional spectroscopies, is inherently a study of
a discrete data stream. Every collected photon results from
a single spontaneous emission event, and it is the time
history of these emissions registered in experiment. Even
in experiments where single-photon resolution is not
achieved, experimental data is often condensed into a
form where it is possible to assign a set of discrete time
points as a representation of the full data set (as in on/
off blinking experiments12).

SMS experiments are inherently noisy, not only due to
imperfections in detection schemes but also due to the
inherent physical stochasticity in the spontaneous emis-
sion process and the ubiquitous presence of thermal
fluctuations over molecular length scales. While SMS has
been hailed for its ability to probe these fluctuations
directly, it remains difficult to extract physical pictures for
molecular dynamics based solely on SMS data streams.
Some of this difficulty is likely fundamental (current SMS
experiments may not collect sufficient data to allow for
direct inversion to molecular dynamics), but even if SMS
data were sufficient to differentiate among all viable
physical hypotheses, it remains an open question as to
the best means to simulate such models to allow for
comparison with experiment. Indeed, much effort has
been expended on the theory of interpreting/modeling
SMS trajectories (see reviews in refs 12 and 13 and
references therein).

Generating function (GF) methods are a well-estab-
lished technique in statistics for dealing with discrete
random events in time.14 In chemical physics texts,15,16 the
GF is often introduced as an elegant and concise means
to derive classical results related to Poisson processes, 1-D
random walks, and similar toy problems. It is apparently
not widely appreciated, however, that these same tech-
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niques are easily extended to complex physical models
appropriate to SMS and that the resulting equations are
well suited to numerical analysis as well as traditional
analytical work. In many ways, the GF technique is
completely natural for the study of SMS trajectories. GFs
were introduced to the field of SMS independently by
Brown17 and Gopich and Szabo18 in the context of kinetic
and stochastic models for dynamics. Zheng and Brown19,20

and Mukamel21 extended this picture to quantum dynam-
ics for single chromophores, much in the spirit of earlier
work by Cook.22 Multiple studies in SMS have since
applied the generating function approach23-29 to various
physical models and situations relevant to SMS.

This Account presents an introduction to the GF
method with examples of how this formalism may be
applied to the field of SMS. The following section intro-
duces the concept of GFs within the context of a simple
random walk model. Section III extends this discussion
to a kinetic/stochastic description of single-molecule
photon emission statistics. Although quantum mechanics
(section IV) complicates the technical details necessary
to perform calculations, all important concepts are clearly
displayed within this simple kinetic picture. Sections V
and VI wrap up with some examples of the GF formalism
applied to SMS including quantum mechanical dynamics
of the chromophore. The examples chosen in this work
assume individual photon emissions to be the observable
stochastic events. Blinking experiments turn out to be
mathematically identical but are not specifically discussed
in the interest of brevity.

II. Generating Functions Introduced
Some elementary properties of GFs are introduced here
in the context of a simple random walk model. Consider
a one-dimensional random walk in continuous time that
begins at the origin (Figure 1). At a given instant in time,
the walker is found at a site indexed by an integer i. The
walker remains at this site until he randomly decides to
hop (either left or right) to an adjacent site. Suppose we
track the total number of leftwards and rightwards jumps
that have occurred up to time t. Call these numbers nl

and nr, respectively. (Note that since nr - nl ) i, tracking
the number and direction of all jumps provides more
information than following i alone.)

If the walker’s decision to stay put, jump left, or jump
right in a short time interval is completely independent

of his prior history, it is possible to formulate the
stochastic dynamics of his travels in terms of an infinite
master equation.

Here it is assumed that each site is equivalent to all others
in the sense that the rate to jump left is always kl and the
rate to jump right is always kr; pnl,nr(t) is the probability
that the walker has made exactly nl left jumps and nr right
jumps prior to time t. Equation 1 implies an infinite set
of equations because the number of possible jumps is
unlimited.

A convenient way to solve eq 1 is to introduce two
“auxiliary”15 variables, sl and sr, and the associated GF

Multiplication of eq 1 by sl
nl sr

nr and summing over all
nonnegative integer values for nl and nr leads to a single
equation for the GF

with the solution

This equation expresses the fact that the joint probability
distribution for left and right jumps reflects two statisti-
cally independent Poisson distributions, a conclusion that
might have been obvious from the nature of the walk. To
see this, expand eq 4 in a Taylor series in sl and sr and
compare terms to definition 2 to find

(Alternately, differentiating eq 4 multiple times with
respect to sl, sr, or both and evaluation at sl ) sr ) 0 will
yield the same result.) The distribution of the walker’s
position along the line follows immediately

where the prime on the sum indicates a restriction to
values of nl such that (nl + i) is nonnegative. This sum
can be shown to approach a Gaussian distribution as time
approaches infinity.15 The mean and variance of this
distribution are conveniently calculated using an ex-
tremely useful property of G(sl,sr,t)

FIGURE 1. A random walk beginning at the origin. Here three
discrete jumps have occurred, two to the right followed by one to
the left. The current position of the walker is i ) 1 with nl ) 1 and
nr ) 2.

d
dt

pnl,nr
(t) )

-(kr + kl)pnl,nr
(t) + krpnl,nr-1(t) + klpnl-1,nr

(t) (1)
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nl sr
nr (2)

∂

∂t
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(t) ) e-klt
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Pi(t) ) ∑
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∞
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)
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∞
′

(klt)nl

nl!

(krt)nl+i

(nl + i)!
(6)
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which follows immediately by differentiating through the
sum of eq 2. We exploit this general result to calculate

and the associated Gaussian approximation to the distri-
bution that becomes increasingly accurate as time
progresses

The preceding example was chosen to illustrate the
following characteristics of the GF approach relevant to
single-molecule spectroscopy:

1. Introduction of the GF reduces an infinite number
of coupled equations to a finite number of dynamic
equations of motion (one in the above case) at the expense
of introducing new continuous auxiliary variables.

2. The conversion from the normal dynamical equa-
tions of motion (eom) to equations for the generation
function is relatively simple, involving only strategic
placement of the auxiliary variables within the ordinary
eom.

3. With a solution for the GF in hand it is possible to
extract the probabilities associated with the original
formulation of the problem and statistical moments for
the occurrence of events under investigation. These
quantities come from differentiating the GF itself.

4. It is possible to track multiple types of events
(forward and backward jumps in the above) within a single
GF eom; each type of event is associated with a unique
auxiliary variable.

III. Generating Functions for Photon Emission:
Kinetic Treatment
The most fundamental event observable to SMS is the
emission of individual photons. With only minor modi-
fication, the above treatment is easily extended to models
for photon counting. In the simplest possible scheme, we
imagine a two-state chromophore under laser excitation
centered at the transition frequency. We assume that the
exciting light is spectrally broader than the intrinsic line
width of the chromophore. Under this condition, the
excitation from ground to excited state is incoherent, as
is the spontaneous emission from excited to ground.30

Were we only interested in the behavior of the chro-
mophore itself (to the exclusion of photon-counting
information), we would formulate the dynamics in terms
of the simple master equation implied by the left panel
of Figure 2

Here, Pg and Pe are the probabilities to find the chro-
mophore in the ground and excited states, respectively.
Tracking photon statistics is impossible with this approach
even though the decay from excited to ground state is
necessarily accompanied by the emission of a photon.

Photon emission information is included by consider-
ing the infinite master equation suggested by the extended
kinetic scheme in the right panel of Figure 2

In this formulation, we have refined our definition of a
state to include not only the chromophore’s electronic
configuration, but also the number of prior photon
emissions that have occurred. Accordingly, the prob-
abilities Pgn and Pen reflect the probabilities to find the
chromophore in the ground or excited state with a past
history of n photon emissions.

In analogy to the preceding section, we define GFs for
each of the indexed probabilities

Multiplication of eqs 12 by sn followed by summing over
n leads to equations of motion for the GFs

with the solution

∂
a

∂sl
a

∂
b

∂sr
b

G(sl,sr, t)|sl)sr)1 )

〈nl(nl - 1)...(nl - a + 1)nr(nr - 1)... (nr - b + 1)〉(t) (7)

〈i〉(t) ) 〈nr - nl〉(t) ) (kr - kl)t (8)

[〈i2〉 - 〈i〉2](t) ) [〈(nr - nl)
2〉 - 〈i〉2](t) ) (kr + kl)t (9)

P(i,t) ≈ 1

x2π(kr + kl)t
exp[-(i - (kr - kl)t)2

2(kr + kl)t ] (10)

FIGURE 2. Kinetic model for two-level chromophore photon
emission under excitation. In the left panel, the instantaneous
electronic state is either ground (g) or excited (e) with Markovian
(rate process) transitions allowed between the two. Dynamics are
governed by the usual master equation approach applied to the two
level system. In the right panel, to study the process of photon
emission, the state space is expanded to track the total number of
photon emissions that have occurred since the field was turned on.
Allowable states are gn and en with n any nonnegative integer. In
addition to the electronic state, the index n counts the number of
previously emitted photons. Spontaneous emission via Γ necessarily
advances this index by one. The shaded circle indicates that the
system currently resides in the ground electronic state and has
previously emitted one photon.

d
dt(Pg(t)

Pe(t) ) ) (-k Γ
k -Γ )·(Pg(t)

Pe(t) ) (11)

d
dt

Pgn
(t) ) -kPgn

+ ΓPen-1

d
dt

Pen
(t) ) kPgn

- ΓPen
(12)

Gg(s,t) ) ∑
n)0

∞

Pgn
(t)sn

Ge(s,t) ) ∑
n)0

∞

Pen
(t)sn (13)

d
dt(Gg(s,t)

Ge(s,t) ) ) (-k sΓ
k -Γ )·(Gg(s,t)

Ge(s,t) ) ≡ M(s)·G̃(s,t) (14)
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Extraction of photon-counting statistics proceeds as in
our previous example. The only difference is that now we
have two GFs corresponding to the ground- and excited-
state manifolds. Experiment, however, is sensitive only to
n and not to electronic state. The GF for photon emission
events is thus G(s,t) ) Gg(s,t) + Ge(s,t), which counts all
contributions to the photon statistics irrespective of the
instantaneous electronic state. The final expression is
analytically tractable since M is diagonalizable

(Note that this particular answer assumes that the system
began in the ground state at time t ) 0. See Figure 3 for
the effect of different initial conditions.)

Although this model is very simple, it does contain
sufficient physics to explore many of the ideas associated
with general photon-counting measurements. Parameters
k and Γ represent the only physical parameters of this
model, reflecting the rate of field-induced electronic
excitation and the rate of spontaneous emission. The
average rate of photon emission is calculated in a straight-
forward, if algebraically tedious, manner as

The second moment of photon emission is traditionally
reported in terms of Mandel’s Q parameter31

The above expressions may also be calculated outside the
long time limit, but the answers reflect the initial condition
of the system, explicit time dependence as the steady state
is approached, and are algebraically much more compli-
cated. Figure 3 graphs the results of such calculations
including time dependence.

Physically, the above expressions are readily inter-
preted. The steady-state (t f ∞) limit for emission rate is
expected to be given by the steady-state probability that
the chromophore is found in its excited state times the
rate of emission from this state. From eq 11, the steady-
state limit Pe(s.s.) ) k/(k + Γ) is determined. The spon-
taneous emission rate is Γ, and the rate of photon
emission follows immediately. Calculation of Q from
physical principles is complicated by the fact that 〈n2〉(t)

requires information on two photon correlations by virtue
of the relation15

In the first equality, P(t1,t2) is the probability density that
the system emits photons at times t1 and t2. This density
contains contributions from two distinct photons for t1 *
t2 and individual photons when t1 ) t2. The probability
density for single-photon emission at a given time is
expected to be the product of Γ and the excited-state
probability at that time, which leads to the indicated
contribution due to single-photon effects within P(t1,t2).
P̂e(t1|t2) is the conditional probability that the system is
found in its excited state at time t1 when it was in the
ground state at t2, and the two-photon contribution
follows when it is recalled that photon emission neces-
sarily dumps the molecule into the ground state. The
expression P̂e(t1|t2) ) Pe(s.s.)(1 - exp(-(k + Γ)(t1 - t2)))
may be inferred from eq 11. Inserting this in eq 19 leads
to eq 18 in the limit of large t.

The fact that Q saturates to a negative value is the
mathematical signature of photon antibunching. Since
spontaneous emission necessarily localizes the electron
to the ground state, it is impossible for two successive
photon emissions to occur immediately after one another.
It takes some time for the system to cycle back to the
excited state to allow for a second emission event. Only
in the limit of k/Γ ) 0 or Γ/k ) 0 will Q vanish. In the
case that k , Γ, for example, eq 16 reduces to

with the associated Poissonian distribution

In the opposite limit (Γ , k), we find analogous expres-
sions, but with Γ substituted for k. In either extreme case,
the slow rate becomes limiting in the problem, and this
rate defines an exponential waiting time distribution
between photon emission events, that is, a Poissonian
process and Q ) 0. In more general situations, the
distributions associated with eq 16 are algebraically
complicated. Q < 0 reflects the fact that finite k and Γ
lead to a correlation between successive emission events
and that the emission times are accordingly less randomly
distributed than a pure Poisson process. Interestingly, Q
< 0 can be taken as an experimental signature that you
are in fact observing a single chromophore32 (in practice,
most experiments report the equivalent quantity P̂e(t1|t2)).

From a practical standpoint, it is convenient to calcu-
late low-order photon counting moments directly without
having to calculate the full GF (especially when analytical
solutions are not available). This is accomplished by
differentiating eq 14 with respect to s one or more times.
The resulting equations for ∂mG̃/∂sm depend on the lower

G̃(s,t) ) exp M(s)t·G̃(s,0) ) exp M(s)t·(Pg(0)
Pe(0) ) (15)

G(s,t) )
e-[(Γ+k-f(s))t/2] (Γ + k + f (s)) - e-[(Γ+k+f(s))t/2] (Γ + k - f (s))

2f(s)

f(s) ≡ x(Γ - k)2 + 4Γks (16)

emission rate ≡
lim
tf∞

d
dt

〈n〉 ) lim
tf∞

d
dt(∂G(s,t)

∂s |s)1
) ) Γk

(k + Γ)
(17)

Q ≡ lim
tf∞

〈n2〉 - 〈n〉2 - 〈n〉
〈n〉

)

lim
tf∞

(∂2G(s,t)

∂s2 |
s)1

) - 〈n〉2

〈n〉
) - 2Γk

(Γ + k)2
(18)

〈n2〉(t) ) ∫0

t
dt1 ∫0

t
dt2 P(t1,t2) )

2Γ2∫0

t
dt1 ∫0

t1 dt2 Pe(s.s.)P̂e(t1|t2) + ΓtPe(s.s.) (19)

G(s,t) ) e-k(1-s)t (k , Γ) (20)

pn(t) )
(kt)n

n!
e-kt (21)
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order derivatives of G̃ in a simple way.20 Up to second
order, for example, we find

The prime notation indicates differentiation with respect
to s. Higher order derivatives on M(s) do not appear since
these higher derivatives all vanish. The matrix implied by
the block form used above is actually 6 × 6 for the present
model but is still easily solved numerically by direct
exponentiation. Since s derivatives of G(s,t) evaluated at s
) 1 correspond directly with photon emission moments
by virtue of eq 7, solving the above equations at s ) 1
yields 〈n〉(t) and Q(t) immediately. This method was used
in the generation of Figure 3. (If one is only interested in
the steady-state values of the various moments, and not
their time dependence, an even simpler computational
scheme may be formulated.29)

For this simple example, it is perhaps unclear why one
would want to introduce the generating function approach.
We have shown simple physical arguments to arrive at
the first two moments and could even go further to show
that all higher moments only depend on quantities we
have already discussed in this case. The true utility of the
GF comes into play when we consider more complex
models for dynamics. A simple physically motivated exten-
sion to the above model is to consider the case that k and

Γ may themselves be fluctuating in time due to stochastic
modulation by the environment. A particularly simple
form of modulation is two-state jump dynamics.15 In addi-
tion to ground and excited electronic states, we imagine
an additional discrete degree of freedom that jumps in
time between two states a and b. Such a model is standard
in the study of low-temperature glasses33 where the two
states represent localized conformational states of the
glass, the so-called two-level system (TLS) model. This
additional degree of freedom evolves with dynamics
specified by the master equation

and through the properties of composite Markov process-
es15,17,34 leads to the GF equations for this four-state system

FIGURE 3. The top left panel shows the generating function as function of s at different times. The top middle panel shows the average
number of emitted photons, 〈n〉(t). The top right panel shows Mandel’s Q parameter, Q(t). We have assumed the model of Figure 3 with
parameter values Γ ) k ) 1 in arbitrary time units. In all upper panels, solid lines correspond to expression 16, which assumes that the
system begins in the ground state at t ) 0. Dotted lines assume a steady-state initial condition, Pg(0) ) Pe(0) ) 1/2. At short times the initial
condition makes a difference, but the effect is quickly washed out. The bottom panels show similar calculations to the top ones but considering
the case of a chromophore coupled to a stochastic two-level system. We have chosen ωab ) ωba ) 0.1 and the same chromophore parameters
as in the top panels for the “a” state, but kb ) Γb ) 0. That is, the a state corresponds to a system that is fluorescing and absorbing, while
the b state is totally inactive. The different lines correspond to different initial conditions. All three reflect equilibrium between electronic
states. The solid line additionally reflects equilibrium between a and b, the dotted line reflects full occupation of the a state at time 0, and the
dashed reflects full occupation of b at t ) 0.

(Ġ̃(s,t)

∂Ġ̃(s,t)
∂s

∂
2Ġ̃(s,t)

∂s2
) ) (M(s) 0 0

M′(s) M(s) 0
0 2M′(s) M(s) )‚(G̃(s,t)

∂G̃(s,t)
∂s

∂
2G̃(s,t)

∂s2
) (22)

(Ṗa(t)
Ṗb(t) ) ) (-ωab ωba

ωab -ωba
)‚(Pa(t)

Pb(t) ) (23)

d
dt(Gg;a(s,t)

Ge;a(s,t)
Gg;b(s,t)
Ge;b(s,t)

) )

(-ka - ωab sΓa ωba 0
ka -Γa - ωab 0 ωba

ωab 0 -kb - ωba sΓb

0 ωab kb -Γb - ωba
)‚

(Gg;a(s,t)
Ge;a(s,t)
Gg;b(s,t)
Ge;b(s,t)

) ≡ M(s)‚G̃(s,t) (24)
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ka(b) and Γa(b) are the rates for chromophore excitation and
emission when the TLS occupies state a(b). The beautiful
thing is that the more complicated system of equations
here (relative to eq 14) is, as the notation implies, formally
equivalent to the simpler dynamics. In particular, calcula-
tion of moments still proceeds via eq 22. Once you can
write down the usual master equation for system dynam-
ics, it is a simple matter to generalize this expression to
M(s). With M(s) and M′(s) in hand, the matrix of eq 14 is
constructed from these blocks, multiplied against time and
exponentiated to arrive at the moments. If you know the
system’s dynamics in terms of a master equation, it is a
trivial numerical procedure to extend this master equation
to a calculation of photon-counting moments. In fact, using
a high-level programing language like Matlab or Math-
ematica, it takes about five lines of code to generate
photon-counting moments once the master equation is
specified! Numerical results are illustrated in Figure 3 for
the case of TLS dynamics an order of magnitude slower
than the photon emission rates and with extreme coupling
to the chromophore such that ka and Γa assume the values
introduced previously, but kb ) Γb ) 0. The rate of photon
emission is halved relative to the earlier model since the
system only spends half its time in the emitting state. Q
now saturates to a positive value, reflecting photon
bunching. Photons are only emitted when the system is
in the a state, which leads to long dark intervals in the
photon emission trajectory. Saturation to the value 2
reflects this bunching phenomena (which alone would
predict Q f 5/2), but tempered a bit by the intrinsic
negative values for Q inherent to the emitting state.

This section has introduced all the relevant ideas
necessary for calculation of photon-counting moments for
models based around stochastic dynamics. The main
points established here include the following items ex-
tending those points brought up in section II:

5. Internal states of the chromophore pose no difficulty
in formulating a GF description of photon counting. In
the case of stochastic models, the master equation is
modified by inclusion of the auxiliary variable s to create
the GF equations of motion.

6. Placement of the auxiliary variables in the formation
of M(s) is elementary. At every occurrence of +Γ in the
master equation transition matrix, make the replacement
+Γ f +sΓ. If there are multiple types of photon emission
being followed (as in two-color detection schemes25)
individual spontaneous emission terms of the form +ΓR

are multiplied by the corresponding auxiliary variable sR.
Note that the -Γ terms are never multiplied by an
auxiliary variable.

7. For models that are not analytically solvable, it is
often most convenient to calculate low-order photon-
counting moments by numerically solving the exact
equations 22 that couple photon moments up to order m
with all lower order moments. The numerical calculation
corresponds to exponentiation of a (m + 1)‚N × (m + 1)‚
N matrix where N is the total number of internal states
accessible to the chromophore system (i.e., N × N is the
size of the corresponding transition matrix for the associ-

ated master equation). It takes almost no programming
effort to perform this calculation once the master equation
is known. Of course, if N becomes large, matrix exponen-
tiation will be slow.

8. Markovian stochastic environmental modulation of
the chromophore is easily handled through the math-
ematical techniques established in the context of com-
posite Markovian processes15 or dynamical disorder.34 The
matrices to be exponentiated become larger, but the
underlying theoretical treatment for the GF approach
remains unchanged.

IV. Generating Functions for Photon Emission:
Quantum Treatment
In the preceding section, a fairly detailed account was
provided for the generating function route toward photon
statistics in the context of completely stochastic models
for dynamics. We shall not formally extend these argu-
ments to the quantum case here (interested readers
should consult refs 20 and 21 for the detailed analysis),
but rather appeal to simple arguments.

Within the stochastic picture, chromophore dynamics
are formulated in terms of a master equation, symbolically
written as

where P̃(t) is the vector of state probabilities and M(s) is
equivalent to the transition matrix when s ) 1. General-
izing to arbitrary s leads immediately to the GF equations
of motion so long as the replacement P̃(t) f G̃(s,t) is made
concurrently. Correspondence with quantum mechanical
systems proceeds via the density matrix formalism and
relies upon the assumption that photon emission events
are treated as incoherent rate processes. We introduce a
linear superoperator L, which acts upon the density matrix
to effect time evolution in the quantum mechanical
system,

It is most convenient to think of F(t) as a vector of
dimension N2 containing all populations and coherences
for a system with N quantum states and L as an N2 × N2

matrix for the reduced system dynamics. The radiation
field will not be considered quantum mechanically (hence
“reduced dynamics”). Exciting fields are treated classically,
and spontaneous emission is handled by integrating out
the field variables to provide elements within L corre-
sponding to the emission process(es).30,35 Within the usual
approximations, this leads to spontaneous emission oc-
curring as a Markovian rate process that dumps chro-
mophore population from upper to lower electronic state
manifolds.

As in the case of stochastic dynamics, we convert eq
26 to a GF picture by appending auxiliary variables sR to
those matrix elements of L that cause population to
appear in lower electronic states as a result of spontaneous
emission processes. The index R distinguishes between

Ṗ̃(t) ) M(s)1)·P̃(t) (25)

F̆(t) ) LF(t) (26)
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the various allowed spontaneous-emission-mediated tran-
sitions (i.e., rovibronic structure and multiple electronic
states). By following every transition individually, it be-
comes possible to separately monitor statistics of photons
from each transition. In the case of spectrally resolved
molecular transitions, this provides a route to emission
spectra and higher order moments resolved into colors.
Or, all transitions can be assigned the same auxiliary
variable to determine photon statistics for broadband
detection. From a formal perspective, we arrive at equa-
tions identical in structure to the stochastic case (For
notational simplicity, the below assumes all photon emis-
sions are counted equivalently and only a single s variable
is introduced.)

Since the elements of F (and hence G̃) represent popula-
tions and coherences of the density matrix, they are
accordingly indexed by two labels. As always, the subscript
n refers to the number of prior photon emissions in our
expanded description of dynamics. For the actual extrac-
tion of moments, it is important to remember that
coherences do not contribute to probabilities, so that

Only those portions of G̃(s,t) and its s derivatives corre-
sponding to populations contribute to the moments in
the quantum case. With this single caveat, we can im-
mediately apply the results of the preceding section to the
calculation of moments up to order m. Equation 22 still
applies provided we use L(s) in place of M(s). So, if it is
known how to write down the matrix L for dynamics of
the chromophore, including semiclassical interactions
with the radiation field, it becomes trivially easy to extract
photon-counting moments. In practice, L may reflect
either Hamiltonian chromophore dynamics with the ad-
dition of field interactions19,20,22 or additional dissipative
interactions with an environment treated implicitly as in
Redfield dynamics29,36 or some combination of Hamilton-
ian dynamics with stochastic modulation.19,20,27

From a conceptual standpoint, quantum dynamics do
little to alter the generating function approach. In sum-
mary, we make the following additions to our running list
of key points:

9. Application of GF techniques to quantum models
requires that photon emission be handled as a rate

process. Since the usual semiclassical treatments rest on
this assumption, this is not a serious limitation for most
chemical applications.

10. Multiple levels of quantum dynamics may be
treated within the GF formalism. Pure Liouvillian dynam-
ics, supplemented with semiclassical field interactions are
possible as are treatments that involve further approxima-
tions. Removing fast and weakly coupled environmental
degrees of freedom to provide a Redfield description for
system dynamics is possible as are schemes involving
stochastic environmental fluctuations that modulate the
Liouvillian operator. What all these schemes have in
common is a linear dynamics that may be written in the
form of eq 26.

V. Examples
Explicit examples of stochastic dynamics were already
detailed in section III, and we choose here two examples
with various levels of underlying quantum dynamics to
demonstrate the wide applicability of the GF formalism.
Although many phenomena of interest to SMS may be
treated in the context of stochastic models and indeed
most of the theoretical work to date has focused on such
pictures, a quantum treatment allows for studying effects
of excitation frequency on photon statistics and (in some
cases) emission frequency as well. In addition, quantum
models for chromophore dynamics have the ability to
predict behaviors based on first principles whereas purely
kinetic treatments typically rely on some level of empiri-
cism to generate the required suite of rate constants. And,
of course, phenomena reliant upon quantum coherence
cannot be captured within purely stochastic schemes.

An elementary and experimentally relevant example of
condensed-phase chromophore dynamics is the behavior
of a two-level chromophore coupled to a stochastically
fluctuating two-level system (TLS). As indicated above, the
TLS picture is the standard model for glassy dynamics at
low temperatures, and many early single-molecule experi-
ments probed exactly these dynamics. The standard
mathematical description for a quantum mechanical two-
level chromophore under laser irradiation are the optical
Bloch equations30,35

We denote the chromophore excited and ground states
as |e〉 and |g〉, respectively; pω0(t) is a temporally evolving
splitting between these two levels reflecting TLS dynamics,
Ω is the Rabi frequency,35 and ωL is the frequency of the
applied laser field; Γ is the spontaneous emission rate. The
explicit time dependence within these equations is con-
veniently removed by invoking the rotating wave ap-

Ġ̃(s,t) ) L(s)·G̃(s,t)

Gab(s,t) ) ∑
n)0

∞

Fabn
(t)sn (27)

1 ) ∑
a)1

N

Faa(t) ) ∑
a)1

N

Gaa(1,t)

〈n〉(t) ) ∑
a)1

N ∂Gaa(s,t)

∂s
|

s)1

〈n(n - 1)〉(t) ) ∑
a)1

N ∂
2Gaa(s,t)

∂s2
|

s)1

(28)

etc.

F̆ee ) iΩ(Feg - Fge) cos(ωLt) - ΓFee

F̆gg ) -iΩ(Feg - Fge) cos(ωLt) + ΓFee

F̆ge ) -iω0(t)Fge - iΩ(Fee - Fgg) cos(ωLt) - Γ
2

Fge

F̆eg ) iω0(t)Feg + iΩ(Fee - Fgg) cos(ωLt) - Γ
2

Feg (29)
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proximation (RWA) and introducing the “Bloch vector”
notation.35

resulting in the optical Bloch equations in their conven-
tional form

where δL(t) ) ωL - ω0(t) is the time-dependent detuning
frequency. Proceeding in the manner outlined in the
previous section, we obtain the generating function
analogue to these equations

where, for example, Y(s,t) ≡ 1/2(Gee(s,t) + Ggg(s,t)) and
similarly for the other variables in an obvious notation
paralleling eq 30. Note that our “rule” (+Γ f sΓ) for
formation of the GF matrix does not directly hold in the
Bloch vector basis (although it does hold when dealing
directly with eq 29, which is how eq 32 is derived19,20). This
slight annoyance is far offset, by the advantages of the

Bloch vector picture. In particular, the absence of field-
induced explicit time dependence in L(s) makes for
efficient numerical calculation. The TLS modulation of
dynamics enters by way of δL(t), which is assumed to hop
between two splitting energies as the TLS changes state.
Internal dynamics of the TLS are assumed to follow eq
23 with both rates equal, denoted R, for simplicity. The
fact that TLS dynamics are assumed to follow a Markovian
dynamics allows us to remove the explicit time depen-
dence in the detuning by extending our GF equations of
motion 2-fold. The procedure is completely analogous to
the purely stochastic model discussed previously and has
been detailed in refs 19 and 20.

In Figure 4, we illustrate some behavior associated with
this mixed quantum/stochastic model. There we choose
model parameters appropriate to the spectroscopy of a
dye molecule in a low-temperature glass, namely, Γ ) 40
MHz, Ω ) 4 MHz, and R ) 1 Hz. The laser is assumed on
resonance when the system is in one of the possible TLS
states (δL ) 0) and badly off resonance in the other state
(δL ) 2 GHz). The initial condition reflects ground
electronic state occupation at t ) 0 and equal occupation
of TLS states as dictated by thermal equilibrium. As in the
purely stochastic model for chromophore/TLS dynamics,
a steady-state emission rate of photons is reached follow-
ing a brief relaxation to this behavior after the driving field
is turned on. Similarly, Mandel’s Q parameter eventually
settles into a constant bunching behavior, reflecting TLS
dynamics. Leading up to this behavior, antibunching is
observed at short times. One behavior captured with the
quantum model not observable in the classical stochastic
treatment is the appearance of Rabi oscillations for
sufficiently strong driving fields. These oscillations are due
to coherence within the chromophore and are completely
missed in the stochastic treatment.

As an example of quantum evolution, we consider the
case of a chromophore with vibrational structure, modeled
as a single harmonic oscillator coordinate. Details for this
model are provided in ref 29, and our discussion here will
be quite terse. We emphasize that although the matrix L

for this model is more elaborate than in preceding cases,
calculation of photon-counting moments proceeds in
exactly the same fashion as for simpler models. Internal
relaxation of the vibrational coordinate is handled through
linear coupling to a harmonic bath. Effects of the bath

FIGURE 4. Photon statistics for a chromophore coupled to a stochastic TLS. Parameters are as described in the text except for the rightmost
panel, which incorporates a Rabi frequency of 400 MHz (i.e., 100× that of the other two panels.) Inset boxes display behaviors over long time
intervals. The right panel superimposes the behavior of the excited-state population (dotted line) with photon number (solid line). The effect
of Rabi oscillations on the emission is apparent. Adapted from ref 19.

u ≡ 1
2

(Fge e-iωLt + Feg eiωLt)

v ≡ 1
2i

(Fge e-iωLt - Feg eiωLt)

w ≡ 1
2

(Fee - Fgg)

y ≡ 1
2

(Fee + Fgg) (30)

u̇ ) - Γ
2

u + δL(t)v

v̇ ) -δL(t)u - Γ
2

v - Ωw

ẇ ) Ωv - Γw - Γ
2

ẏ ) 0 (31)

U̇ ) - Γ
2

U + δL(t)V

V̇ ) -δL(t)U - Γ
2

V - ΩW

Ẇ ) ΩV - Γ
2

(1 + s)W - Γ
2

(1 + s)Y

Ẏ ) - Γ
2

(1 - s)W - Γ
2

(1 - s)Y (32)
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are included implicitly in the equations of motion of the
electronic, single oscillator system through application of
standard Redfield theory.36,37 As in our previous models,
electronic relaxation is allowed through spontaneous
emission and the excitation field is handled semiclassi-
cally. The couplings between ground and electronic
manifolds are calculated within the Condon approxima-
tion for transition dipoles. In Figure 5 (left plot), we show
the calculated absorption spectrum and associated Q
parameter spectrum evaluated in the steady-state limit.

Physical parameters for Figure 5 were chosen to display
results consistent with linear response theory for both the
absorption and emission line shapes.29 Coupling between
the vibrational coordinate and the bath is tuned so that
vibrational relaxation is sufficiently fast to ensure a relaxed
thermal occupation of vibrational levels in both the
ground and excited states when the applied field on.
Additionally, the Rabi frequency of the exciting field was
chosen small enough (relative to spontaneous emission
rates) to ensure nearly all population resides in the ground
electronic manifold at steady state. The frequency of the
vibrational coordinate, ω0, is much higher than thermal
energy scales, so effectively all vibrational population
resides in the vibrational ground state (regardless of the
electronic state). Under these conditions, the zero phonon
absorption line (0-0) is much narrower (and correspond-

ingly taller) than the spectroscopic lines associated with
transitions to higher vibrational levels (left plot of Figure
5). Transitions to higher levels are broadened by interac-
tions with the bath, while the line width of the 0-0 line is
dominated by radiative decay back to the ground state
(which we chose 100 fold slower than vibrational relax-
ation). Integrating the absorption lines gives the result
shown with squares in the right plot; these “line” heights
reflect the Condon overlaps of the possible transitions out
of the system’s ground (electronic and vibrational) state.

While the absorption line shape can be easily predicted
by linear response theory, the corresponding Q parameter
calculation is not simply calculated within existing linear
response frameworks and our calculation provides this
information as well (see however ref 26 for an alternative
methodology). Q parameter as a function of excitation
frequency is recorded in the lower half of the panes of
Figure 5. The parameter regime selected here ensures
quite small values for the Q parameter. Other parameter
regimes can lead to sizable Q values.29

Since this model displays vibrational structure with line
widths much smaller than level spacings, it would be
possible to experimentally differentiate between photons
emitted in different transitions by the representative colors
associated with these transitions. The right plot of Figure
5 shows calculated emission spectra inferred by counting

FIGURE 5. Photon statistics for a chromophore with a harmonic vibrational degree of freedom. Absorption spectrum and associated Q
spectrum are seen in the left plot (calculated in the steady-state limit). Parameters were chosen such that linear response results and the
exact GF calculation agree for the absorption line shapes. (The apparent positive and negative value for Q at ωL - ωeg ) 0 reflects rapid
variation of Q in the immediate vicinity of this point.29) Emission spectra are shown on the right and correspond to a variety of exciting fields.
The squares represent the results from the absorption calculations integrated over the individual peaks to explicitly display the mirror symmetry
between absorption and emission for this linear-response regime calculation. Adapted from ref 29.
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all transitions with different frequencies separately; that
is, we assign different auxiliary variables to the spontane-
ous emissions occurring at the various allowed frequen-
cies. Note the Stokes shift in the emission spectrum and
the fact that we can calculate corresponding Q spectra
for the spectrally resolved case. It is worth emphasizing
the differences in Q spectra from the absorption and
emission panes of the figure. Absorption Q calculations
count all emitted photons identically and calculate sta-
tistics as a function of exciting laser frequency. Emission
Q calculations consider emissions with different energy
splittings between the states as different; a unique auxil-
iary variable is introduced for each allowed transition
frequency. Laser frequency is held constant (the figure
shows three different excitation frequencies), and photon
statistics are collected for each emitted color separately.
We do not capture the Lorentzian broadening of transi-
tions with this technique, nor could we directly compare
with experiment if individual transitions were not well
resolved. Our theoretical observables are differentiated by
transition, whereas experiment is sensitive only to fre-
quency. However, we do reproduce linear response results
for the emission spectrum (mirror image of the integrated
absorption as expected for our parameter regime) in this
case and the corresponding Q parameter spectrum. Note
the quantitative difference in Q parameter values in the
emission case, both relative to absorption and depending
upon excitation frequency. While these numbers are easily
inferred from the absorption values for this limiting
parameter regime, competition among various physical
time scales in general cases can lead to interesting
results.29 Monitoring higher order photon statistics yields
enhanced information on system dynamics relative to line
shapes alone.

VI. Conclusion
The continual evolution of experimental single-molecule
techniques dictates that new theories and computational
algorithms be developed for the purpose of interpreting
SMS measurements. The inherently discrete nature of data
in a large class of SMS experiments makes the GF
approach an appealing theoretical tool for a broad range
of SMS problems. We have reviewed here the application
of such approaches to experiments that measure photon-
counting statistics. Extension to blinking experiments and
related measurements is immediate as the GF approach
applies to any linear, memory-less dynamics where the
counted events are pure rate processes.

The GF technique is useful as a practical numerical tool
since it allows us to translate well-established methods
for dynamics of the chromophore (master equations,
optical Bloch equations, Redfield equations, etc.) into
equations that predict the observables attainable by SMS.
Although the equations will become more and more
computationally expensive as higher order moments are
calculated, the programming effort in extending traditional
calculations is negligible. As such, the GF approach is
especially appealing for testing hypothetical models against

experimental data. Especially in the context of stochastic
models for dynamics, it is easy to write down the
hypothetical master equation which is immediately trans-
lated into GF equations of motion, suitable for simple
numerical “experiments”.

The research summarized herein was supported in part by the
Research Corporation and the National Science Foundation. I
thank Yujun Zheng and Golan Bel for their contributions to the
work reviewed here.
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